NET Token

Developed by SCD

Goal: providing PKCS, JCE and CSP access to network-based HSMs

Entirely developed in plain C++

- Tested according to PKCS#11 standards

Performances are similar to the target HSM

Parallel calls managed by a dedicated system

- Client and server version for centos, RHEL and windows 64 bits
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Net Token was a system allowing remote access to an enterprise-grade HSM from a
standard PC using a special driver. Locally a PKCS#11 DLL containing all the PKC#11 entry
points was present on the PC and under the hood, it was doing remote calls to a PKCS#11
proxy server, handling calls to the HSM. With such a system, access to an HSM could be
shared by thousands of customers. A plug-in was developed, cert++, allowing certificates to
be also securely remotely stored.

Additionally we developed a CSP and JCE driver, wrapping the PKCS#11 calls.

Recording #1.mp4 - Goodle Drive

Recording #2.mp4 - Google Drive

For the work, we developed from scratch a custom PKC#11 driver.


https://drive.google.com/file/d/1dYY-Q9I_atbhvPlOVSSGtQlpFfNDWgz_/view?resourcekey
https://drive.google.com/file/d/1Xd7yqb1vRD0fgV9zkWBf3-V1eI34hS-L/view?resourcekey

