NET Token

Developed by SCD

Goal: providing PKCS, JCE and CSP access to network-based HSMs

Entirely developed in plain C++

- Tested according to PKCS#11 standards

Performances are similar to the target HSM

Parallel calls managed by a dedicated system

- Client and server version for centos, RHEL and windows 64 bits

/\ D

management

CommandProcessor.cpp -8 3¢ = e Walue.cpp utests.cpp 2y ket.c ProtoCommand. b

(%] talker - {Global Scope) - & get_attribute_value{Talker: :HsmContesxt 2 o
461 static void
462 —lset_attribute value({Talker::HsmContext® context, JsonBox::Value& request, JsonBox::Value& respq
463 {
454 std::cerr << "set_attribute_value™ << std::endl;
485
466 JsonBox::Value& args = request[™args”];
467 CK_SESSION_HANDLE hSession = args["session_handle™].getInt();
468 CK_OBJECT_HANDLE hObject = args["object_handle”].getInt()};
4G9
478 std::vector<Marshalling::Attributelrap» attrs = Marshalling::json_to_template(args["templat
471 std::cerr << “attributes here:™ << NetCard::dump_attributes((CK_ATTRIBUTE_PTR)&attrs[6], ((
472 SmartCards::EToken: :tok_chk(context.getFunctionList()-»C_SetAttributeValue(hSession, hObjeq
473 response["args”] ["result”].setString("0K");
474 }
475
476
477 static void
478 -lget_attribute_value({Talker::HsmContext® context, JsonBox::Value& request, JsonBox::Value® respq
479 {
438
481 i try
ADD I

binary HSM \

messages

over IP
Client | >
do most processing <

Server

[—

- - parallel tasks system
L 1 - High performances

PKCS
JCE
CSP

binary HSM
messages

HSM

Net Token was a system allowing remote access to an enterprise-grade HSM from a
standard PC using a special driver. Locally a PKCS#11 DLL containing all the PKC#11 entry
points was present on the PC and under the hood, it was doing remote calls to a PKCS#11
proxy server, handling calls to the HSM. With such a system, access to an HSM could be
shared by thousands of customers. A plug-in was developed, cert++, allowing certificates to
be also securely remotely stored.

Additionally we developed a CSP and JCE driver, wrapping the PKCS#11 calls.

Recording #1.mp4 - Goodle Drive

Recording #2.mp4 - Google Drive

For the work, we developed from scratch a custom PKC#11 driver.

https://drive.google.com/file/d/1dYY-Q9I_atbhvPlOVSSGtQlpFfNDWgz_/view?resourcekey
https://drive.google.com/file/d/1Xd7yqb1vRD0fgV9zkWBf3-V1eI34hS-L/view?resourcekey

